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Talk outline

* ‘Age’ models for OSL data — why bother?
» Estimating your errors without erring

* Displaying your data simply and correctly
» Data behaving badly — ‘over-dispersion’

* Age models — context is everything!

* Age models — some practical tips for beginners




Photon counts from optical stimulation of a quartz grain
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OSL counts in N = 250 consecutive channels (inset: magnified
graph of counts in the last 40 channels). Y, = the total count over

the first n channels, and Y, ..., Y, and Y are used to estimate the
background count. Here, n = 8 and k = 5.
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H = estimate of the background-corrected (‘net’) OSL signal,
assuming the background counts have a Poisson distribution.

But do they?

Calculate the ratio of the variance (i.e., the square of the standard
deviation) to the mean of the k background counts

Variance/mean ratio = 1 if Poisson, and >1 if ‘extra-Poisson’

For data with an extra-Poisson component, use equations given by
Rex Galbraith (Ancient TL 2002):




Other errors to include

* Instrumental (ir)reproducibility

» Measure for each instrument
» Determine for specific signal-integration periods
« Simple method described by Jacobs et al. (Radiat Meas 2006)
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Estimation of the equivalent dose, D,

The data are OSL signals y1, yo, ..., y, (and their precisions) obtained
from given known doses x4, 2o, . .., z,, (corrected for background and
sensitivity change) plus the natural OSL signal ;.

We want to estimate the natural dose z( that produced vy, (and its
precision).

(a) Growth curve (b) Ratio estimate (c) Linear estimate
Yo + ___________ (x4, y1) Yo { ___________ (X2, Y2)
OSL (%1, y1)
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Curve-fitting errors

* Determine by Monte Carlo simulation

« What form is the frequency distribution of OSL intensities at
each dose point — normal (Gaussian) or log-normal?

 Log-normal distributions of single-grain OSL intensities reported
by McCoy et al. (Radiat Meas 2000)

» Appropriate MC methods described by Yoshida et al. (Radiat
Meas 2003) and Duller (Ancient TL 2007)

LAKE WOODS 1 (Natural radiation) _LAKEWOODS 1 (Natural radiation)

“ m - __b__
L@ oo | &)
2 gem
gdﬂ- 53
5 I
§ ) fix
zo
10 100
0 0 T
1] 400 3200 25600 204800 1638400 0 1

Brightness (Log scale) Counts (Log base 10)



Beta-source variability to single grains

» Cross-disc spatial variation in dose rate from laboratory 3 sources

» Measure for each instrument, e.g. Ballarini et al. (Ancient TL 2006)

Beta dose rate (GY/s)

Beta dose rate (GY/S)

Beta dose rate (GY/S)

Beta dose rate (Gyls)




D, estimates for 120 aliquots
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Radial plot of D, estimates for 120 aliquots
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Radial plots

Data are estimates z, 2o, ..., 2z, with standard errors o, 09, ..., 0,
Draw a scatter plot of y; = (z; — 209)/o; against z; = 1/0;
Then z; — zy = y;/x; = slope of line through (0,0) and (x;, y;)

and each y; has unit standard deviation
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Radial plot of D, estimates for 120 aliquots
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Weighted histograms (probability density plots)
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Probability density plots: conflating 2 sources of error
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Over-dispersion

* The extra spread in D, values remaining after having

taken into account measurement uncertainties:
photon counting statistics
background correction (extra-Poisson?)
instrumental (ir)reproducibility
curve-fitting errors
beta-source heterogeneity (for single grains)

* Relative standard deviation of the D, estimates above
and beyond all known uncertainties, expressed in %

* Denoted by o, by Galbraith et al. (Radiat Meas 2005)

« Ubiquitous in natural samples and lab-dosed samples
» dose-recovery tests
* recycling ratios




Why do we get over-dispersion?

» Because of ‘experimental’ and ‘natural’ variation
» experimental errors are reducible
« but natural variation is inherent

* Variation between aliquots/grains in the lab

* OSL source traps not filled to same extent
* before burial: partial bleaching
« after burial: sediment mixing, micro-dosimetry variations

 heating/bleaching don’t empty all traps uniformly
e differences in thermal transfer effects

» Non-identical field and lab conditions
* bleaching spectra
 types of ionising radiation
* dose rates
 defect migration with time/temperature




How much over-dispersion do we get?

 Factorial experiment (Galbraith et al., Radiat Meas 2005)

- Six replicates of a 23 factorial design. The 3 factors:

1. size of test dose — 0.5 or 5 Gy
2. preheat temperature — 180°C or 260°C
3. size of aliquot — ‘small’ (8 grains) or ‘large’ (80 grains)

S1 K166, annealed then given a laboratory gamma dose of
2.74 Gy

S2 K162, bleached then given a laboratory beta dose of
46 Gy

S3 AC150, bleached then given a laboratory beta dose of
2535

S4 AC150, natural (field) dose of ~ 25 Gy

S5 K162, bleached then given a laboratory beta dose of
2.74 Gy

S6 K162, natural (field) dose of ~ 46 Gy




Sample and dose Aliquot Recycling ratio Natural and surrogate natural

size
(95% CI) Ow Oc O (95% CI) Ow Oc
S1: K166, y dose 2.74 Gy Small (0.8-2.0) K : 4.7 (3.5-6.5) 2.7 5.4
Large ; (0.6-1.3) (0.6-1.2) 0.4 0.9
S2: K162, f dose 46 Gy Small == (0.9-2.5) (0.5-2.5) 24 2.7
Large (0.6-1.8) (0.9-2.5) 2.4 2.8
S3: AC150, f dose 25 Gy Small (0.0-1.8) (0.7-3.0) 3.4 3.8
Large (0.3-1.2) (1.1-2.4) 1.3 2.1
S4: ACI150, field dose ~ 25 Gy = Small (0.0-2.0) (5.2-10.0) 2.4 75
Large ‘ {0.5-1.6) ) (2.8-5.2) 1.3 3.9
S5: K162, 8 dose, 2.74 Gy Small (0.0-2.9) " (8.2-16.6) 5.1 12.6
Large (0.0-1.5) . : - (2.3-4.4) 1.4 3.4
S6: K162, field dose ~ 46 Gy Small ‘ (1.7-4.2) . : L (13.6-24.3) 33 18.0
Large (1.8235) . : E (9.0-16.3) 1.7 11.9

Combined estimate of gy, for R; vs. R» 1.4 (1.2-1.6)

Estimates of over-dispersion

* Up to 3% for recycling ratios

» Several % for dose recovery tests (surrogate naturals)

* More for natural samples (typically 10-20%)




Age models (actually, D, models)

 Typically, the weighted mean of Y., Y, ... etc. is calculated as:

YIo!+Y,lc;+...

Y =
1o} +1/0; +...

* Note that the weights are by absolute (not relative) standard error

» So the weighted mean of D, values with the same relative errors
will be biased towards the smaller values

* Now, the relative standard error of an estimate = absolute standard
error of its natural logarithm (log,)

* S0, by using the natural logs of the D, values, the weighted mean
can be calculated with the relative standard errors

* The ‘Central’ and ‘Common’ age models do this



Central and Common age models

» Developed for fission-track ages by Galbraith & Laslett (NTRM 1993)
» Extended to D, estimates by Galbraith et al. (Archaeometry 1999)
* Both give weighted mean (= geometric mean of true D, values)

« Central age model calculates and includes any over-dispersion
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When (not) to use these models

» Central/Common age models may be appropriate for sediments that:
» were well bleached when deposited
* have remained undisturbed since burial
» and have no dosimetry complications (‘hot’ spots, ‘cold’ spots)

* Probably not suitable for poorly bleached and/or mixed samples

* Alternative models include:
* Minimum age model (Galbraith & Laslett, Galbraith et al.)
* Maximum age model (Olley et al., Quat Sci Rev 20006)
* Finite mixture model (Galbraith & Green, NTRM 1990;

Roberts et al., Radiat Meas 2000)

» Key points:
» field context is vital
» take all available evidence into account to decide model choice
* obtain independent estimate of over-dispersion for MAM & FMM
» don’t apply every model to every sample!




Continuous mixtures

* Where the smallest D, values = age of ‘target’ event

 3- and 4-parameter ‘Minimum’ age models:

Here x; has a mixture distribution — a mixture of a single minimum value
~ with probability p and a continuous range of values greater than -,
usually modelled as a truncated normal distribution.

‘Mirror image’ of Minimum age
model = Maximum age model

I | I |

Y i u+c  u+2c u+3o

There are 4 parameters: v, 1, o and p, the proportion of grains that have
the minimum dose. y = u in 3-parameter version.
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Discontinuous mixtures

* ‘Finite’ mixture model for samples composed of discrete age-

populations of grains mixed together after burial
« common at archaeological sites (Jacobs & Roberts, Evol Anthrop 2007)
* e.g. sample 11 from Sibudu Cave (South Africa) is a mixture of Iron Age
(IA) and Middle Stone Age (MSA) sediments
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Finite mixture model
* Apply only to single grains and not to continuous mixtures!
* Input:
* single-grain D, values and standard errors
» estimated number of finite D, components

- estimate of inherent over-dispersion (o,)

e Output:

» D, and standard error of each component (Central age model)
* relative proportion of grains in each component

* two estimates of goodness-of-fit
» maximum log likelihood (MLL)
» Bayes Information Criterion (BIC)

 FMM developed for fission-track ages by Galbraith & Green (1990)

 But fission-track ages have zero over-dispersion, so OSL version
(Roberts et al., 2000) includes over-dispersion as extra parameter




* Procedure;

« change number of components and over-dispersions to:
* maximise MLL (increase by > 2 for each added component)

» minimise BIC (MLL penalised for each added component)

« MLL and BIC may not always give same best-fit outcomes, so

check result not sensitive to different over-dispersion values
* David et al. (J Quat Sci 2007), Jacobs et al. (J Arch Sci 2008)
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Concluding remarks

Models are garbage collectors, so collect good datal
Correctly estimate your measurement errors

Display your D, values meaningfully (as radial plots)
Measure (and report) your D, over-dispersion values

Consider sample context when selecting an age model

Include over-dispersion when implementing age model

Don’t use FMM for m-g aliquots or continuous mixtures






